Artificial Intelligence-Based Modeling for Recruiting Young Professionals

Authors

DOI:

https://doi.org/10.58423/2786-6742/2024-6-81-101

Keywords:

personnel, recruitment, modeling, artificial intelligence, logistic regression, linear regression, decision trees, random forest, XGBoost

Abstract

The development of social networks, the popularization of remote work, and globalization provide a basis for the transformation of HR management. The efficiency and quality of implementing existing recruitment technologies are enhanced through their digitalization: the use of integrated mobile applications and automation of HR processes, digital integration with cloud services, the use of predictive people analytics, augmented reality (AR), virtual reality (VR), and artificial intelligence (AI). However, there is an existing problem of job search for young professionals, which lies in the lack of experience, competition, and heterogeneity of educational programs. Because of this, employers find it challenging to evaluate and hire such candidates. Hiring young professionals is important for companies for various reasons, including preparing future specialists and accessing academic resources. The article investigates the potential of using intelligent-based methods for recruiting young professionals, which includes automating routine tasks, accelerating candidate selection, and evaluating the objectivity of candidates. The study employs machine-learning methods for predicting the hiring of young professionals: logistic regression, linear regression, decision trees, random forest, and XGBoost. The R programming language was used for data analysis; the Python programming language and the SciKit-Learn and XGBoost libraries were used for training and testing machine-learning models. The models take into account the academic performance of young professionals and their salary levels. The study's results can be used to optimize the recruitment process for enterprises and organizations. Artificial intelligence can assist in automating candidate selection, analyzing their skills, and better matching job requirements. The research can help young professionals better understand labor market requirements, gain valuable advice and insights on how to prepare and increase their competitiveness in the job search.

Author Biographies

Viktoriia Makarovych, Ferenc Rakoczi II Transcarpathian Hungarian College of Higher Education (FR II THCHE)

Candidate of Economic Sciences, Associate Professor

Adalbert Makarovych, Taras Shevchenko National University of Kyiv

Master's student

References

Vodianka, L., Ratushniak, D., & Luste, O. (2022) Innovatsiini metody pidboru personalu v umovakh dydzhytalizatsii. BIZNESINFORM № 1 ’2022, 403-409. URL: https://doi.org/10.32983/2222-4459-2022-1-403-409 (last accessed: 23.03.2024). DOI: https://doi.org/10.32983/2222-4459-2022-1-403-409

Zolotukha , R., & Hlazunova , O. (2023). Proektuvannia skhemy bazy danykh dlia protsesu avtomatyzatsii pidboru personalu v IT komandy. Collection of Scientific Papers «SCIENTIA», (November 3, 2023; Bern, Switzerland), 127–129. URL: https://previous.scientia.report/index.php/archive/article/view/1294 (last accessed: 21.03.2024).

Semenenko Yu. (2024) Rol informatsiinykh tekhnolohii ta instrumentiv shtuchnoho intelektu v pidvyshchenni efektyvnosti pidboru, navchannia ta adaptatsii pratsivnykiv. Halytskyi ekonomichnyi visnyk, № 2 (87). 20-29. URL: https://doi.org/10.33108/galicianvisnyk_tntu2024.02 (last accessed: 10.04.2024). DOI: https://doi.org/10.33108/galicianvisnyk_tntu2024.02

Sochynska-Sybirtseva, I., Sybirtseva, O., & Dorenska, A. Novitni tekhnolohii upravlinnia personalom: navch. posib. Kropyvnytskyi : TsNTU, 2023. 278 s.

Fostolovych V., Botsian T., Pavlova S., Fostolovych R., Hurtovyi O. (2023) Shtuchnyi intelekt u sferi hostynnosti: mistse intehruvannia, spetsyfika vykorystannia ta vplyv na dokhody pidpryiemstva. Ekonomika. Upravlinnia. Innovatsii Vypusk №1 (32). URL: http://eprints.zu.edu.ua/37678/1/283100-Article%20Text-652510-1-10-20230627.pdf (last accessed: 23.03.2024).

Chernenko, N. (2022). Shtuchnyi intelekt v upravlinni personalom. Tavriiskyi naukovyi visnyk. Seriia: Ekonomika, (12), 76-83. URL: https://doi.org/10.32851/2708-0366/2022.12.11 (last accessed: 23.03.2024). DOI: https://doi.org/10.32851/2708-0366/2022.12.11

Alessandro Di Bucchianico. Coefficient of Determination (R2). Wiley StatsRef: Statistics Reference Online. URL: https://doi.org/10.1002/9780470061572.eqr173 (дата звернення 04.04.2024). DOI: https://doi.org/10.1002/9780470061572.eqr173

Analysis on Campus Recruitment Data. URL: https://www.kaggle.com/code/benroshan/you-re-hired-analysis-on-campus-recruitment-data (дата звернення 10.04.2024).

Breiman L. (2001) Random Forests. Machine Learning. Volume 45, рр.5–32. URL: https://doi.org/10.1023/A:1010933404324 (last accessed: 20.04.2024). DOI: https://doi.org/10.1023/A:1010933404324

David W. Hosmer, Jr., Stanley Lemeshow. Applied Logistic Regression. URL: https://ftp.idu.ac.id/wp-content/uploads/ebook/ip/REGRESI%20LOGISTIK/epdf.pub_applied-logistic-regression-wiley-series-in-probab.pdf (last accessed: 10.03.2024).

Liu D. C. &Nocedal J. (1989) On the Limited Memory Method for Large Scale Optimization. Mathematical Programming B. 45 (3). 503–528. URL: 10.1007/BF01589116. S2CID 5681609 DOI: https://doi.org/10.1007/BF01589116

Pawan Budhwar, Soumyadeb Chowdhury, Geoffrey Wood, Herman Aguinis, Greg J. Bamber, Jose R. Beltran, Paul Boselie, Fang Lee Cooke, Stephanie Decker, Angelo DeNisi, Prasanta Kumar Dey, David Guest, Andrew J. Knoblich, Ashish Malik, Jaap Paauwe, Savvas Papagiannidis, Charmi Patel, Vijay Pereira, Shuang Ren, Steven Rogelberg, Mark N. K. Saunders, Rosalie L. Tung, Arup Varma. (2023) Human resource management in the age of generative artificial intelligence: Perspectives and research directions on ChatGPT, Human Resource Management Journal. 33, 3. (606-659). URL: https://doi.org/10.1111/1748-8583.12511 DOI: https://doi.org/10.1111/1748-8583.12524

Song YY, & Lu Y. (2015) Decision tree methods: applications for classification and prediction. Shanghai Arch Psychiatry. Apr 25 27(2);130-5. URL: 10.11919/j.issn.1002-0829.215044.

SPSS TUTORIALS: PEARSON CORRELATION. URL: https://libguides.library.kent.edu/SPSS/PearsonCorr (last accessed:10.04.2024).

Tianqi Chen, Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. URL: https://dl.acm.org/doi/pdf/10.1145/2939672.2939785 (last accessed:10.04.2024).

Tyagi, P., Chilamkurti, N., Grima, S., Sood, K. and Balusamy, B. (Ed.) (2023) The Adoption and Effect of Artificial Intelligence on Human Resources Management, Part A, Emerald Publishing Limited, Leeds. pp. i-xxii. URL: https://doi.org/10.1108/978-1-80382-027-920231015 (last accessed:10.04.2024). DOI: https://doi.org/10.1108/9781803820279

Published

2024-07-09

Issue

Section

Economics and management